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ABSTRACT

A review of our knowledge of circulation and
currents in the coastal water of Louisiana indi-
cates that, despite notable progress in a few
specific areas, we lack a rudimentary knowledge
of the mechanics of water motion along most of
the coastline. The Mississippi River salt wedge
and the mixing of its effluent plume into the
open water of the Gulf of Mexico are generally
understood, but detailed salt balance and turbu-
lent mixing studies should now be undertaken.
The portion of the Louisiana shelf within the
area 80 km west of the Mississippl has been
studied in detail with regard to tidal currents,
long-term drift, hydrography, and local wind
drift. Outside of this area, apparent ignorance
prevails except for seasonal salinity patterns
and the occasional isolated study. Summer current
reversals toward the east and high tidal ranges
in the vicinity of Calcasieu Lake, for example,
remain unexplained. Detailed knowledge of the
dynamics of our prolific coastal bays and estu-
aries 1s embarrassingly poor. Numerical modeling
perhaps offers a shortcut to overcoming this
disadvantage, but realistically this technique
will only be effective after the controlling
forces are better defined and understood by
dynamically oriented field studies. Existing
numerical models of Barataria Bay and Chandeleur-
Breton Sound are cases in point. Tidal passes,
minor river mouths, and the circulation within
the wetlands proper have been subject to sporadic,
short-term measurement programs, but definitive
studies of the flux of mass, heat, salt, and
other important scalars have yet to be performed.
A list of research priorities to eventually allow
better utilization of our coastal waters is
presented at the end of this report.
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INTRODUCTION

From the point of view of the physical
oceaﬁographer, Louisiana is endowed with a fascin-
ating variety of dynamical environments. The
more than 450 km of coast from the Mississippi

' state border westward to the Sabine Lake boundary
with Texas (see Fig. 1) are studded with great

rivers of continental scale, a sound of impres-
sive dimensions, and a series of brackish bays
and estuaries that are unrivaled for biological
productivity anywhere in the contiguous United
States. The usual oceanographic driving forces
of wind, tide, atmospheric pressure gradients,
and semipermanent water surface slopes keep
Louisiana coastal waters constantly in motion.
These movements, however, are affected to an »
unusual degree by the huge volume of fresh water
injected into the coastal waters by two great
rivers, the Mississippi and the Atchafalaya, plus
abundant rainfall along most of the coast.. The
density gradients and buoyancy effects brought on
by the mixing of these fresh and brackish waters

" drained from the land with the saline waters of

the Gulf of Mexico must always be considered in
understanding the mechanics controlling circu-
lation and diffusion along the Louisiana coast.
In the immediate nearshore zone, wave-driven
currents will control the circulation and beach
drift, while buoyancy spreading and gravitational
convection will assume important roles at tidal
passes and estuary mouths., '

The large-scale geometry of the coast is not
only of geomorphic interest but also of impor-~ \
tance in determining large-scale flow patterns.
The 80-km protrusion of the Mississippi delta.
into the Gulf of Mexico is exceeded perhaps only
by Cape Cod in its ability to alter and affect
the current, tidal, and ,wave fields operating in
the local coastal waters. Large-scale topo-
graphic controls on the flow field can be ex-
pected to be exerted by these three zones: the
shallow sound and shelf east of the delta, the

" severe bathymetric curvature characteristic of

the delta proper, and the long, regular coast and
shelf extending west to the Texas boundary.

1



Winds are quite consistent along the length
of the Louisiana coast from the Mississippi delta
westward to Sabine Lake. Figure 2 illustrates
.with bivariate wind speed and direction plots the
changes between seasons and between the two
offshore areas, Bayou Lafourche and Sabine Pass,
which are separated by 280 km. As the season
progresses from summer to fall, winds generally
increase in speed and shift to a more easterly
and northeasterly direction. Winter brings only
slightly higher wind speeds, but the directions
are the most variable of the year. Spring is a
transition back to the summer direction distri-
bution but with slightly higher wind speeds. The
notable lack of westerly wind components is
apparent at both stations throughout the year.

We then might expect local wind-driven currents
to be predominantly toward the west.

Considering the thousands of observations
(replotted from Brower et al. 1972) making up the
distribution plots, the similarities between
these two locations near the extremities of the
Louisiana coast are remarkable. Long-term sta-
tistics, however, can be quite misleading when it
comes to the nonlinear response of water to wind.
Murray (1972b, 1975b) has clearly shown the
dominant role that intense winds associated with
specific sectors of migrating high and low
pressure cells play in determining three-dimen-
sional circulation on the eastern Louisiana
shelf.

The objective of this compendius report is
to systematically review the major areas of
research involved in the understanding of Louis-
iana's coastal waters, pointing out progress
where it is present, ignorance where appropriate,
and finally ranking what are felt to be the most
urgent needs for knowledge in order to wisely
utilize our coastal waters.

THE MAJOR RIVER MOUTHS

If one had to identify the one most dominant
influence on Louilsiana's coastal waters it cer-
tainly would be the discharge of the Mississippi
River. It is a phenomenon so conspicuous that it
is readily seen on numerous satellite photographs
becuse of its unusually high levels of turbidity
and its temperature contrasts to normal Gulf
waters, which are apparent on the infrared scanners.

The seaward ends of the Mississippi passes



are classical examples of what estuarine ocean-
-ographers refer to as salt wedge estuaries
(Pritchard 1952, 1955). Figure 3 is'a typical
example of the processes operating inside the
channels. Despite the high volume of flow from
the Mississippi, weakly diluted Gulf water is
actually flowing upstream in the lower half of
the channel. In the upper half of the channel,
river water, which has entrained small quantities
of salt water from beneath, flows gulfward at
speeds 1n excess of 3 ft/sec. It is the greater
density of the Gulf salt water that sets up the .
horizontal pressure gradient favorable for the
Gulf water to intrude up the river channel. Low
tide ranges inhibit the intense mixing between
the river and the seawater normally seen in the
estuaries of the Atlantic coastal plain, but salt
does apparently move vertically up into the upper
layer. The exact mechanism, although long con~
jectured to be the breaking of interfacial waves,
remains unproven. Flooding tides increase the

- upstream flow in the bottom layer and at times

can even temporarily halt the river flow in the
upper layer. On the other hand, it is common for
the salt wedge to be completely swept out of the
passes during the flood stage of the river in the
spring.

A definitive series of papers on Mississippi

_ River mouth processes have been published in

recent years by Wright and his colleagues at
Louisiana State University (Wright 1970, 1971;
Wright and Coleman 1971; Wright et al. 1973) and
most notably in the definitive review by Wright
and Coleman (1974), Wright's work shows that
buoyancy forces rather than turbulence are usually
the most important at natural stratified river
mouths. A controlling parameter expressing the

. ratio of inertial forces to buoyancy forces is

the densimetric Froude number F', given by

F' = u
(thv)llz ,
wheére . ' ;
G 1s the -average speed in the upper layer
Y =1 - (pf/ps)
where . o
pf i1s the density of the effluent water and
is the density of the lower intruding water,
g is the acceleration of gravity, and
h' is the depth to the density interface
According to Stommel and Farmer (1952), during
salt wedge intrusion the average speed of the

3
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freshwater effluent and the depth-to the density
interface will mutually readjust so as to keep

the densimetric Froude number near unity. Monthly

observations over a 2-year period at South Pass
confirmed this relationship (Wright 1970).
Landward of the edge of the channel the densi-
metric Froude number will decrease as the salt
wedge thins out upstream. As shown in Fig. 4,
however, F' will increase sharply over the bar,
achieving supercritical values over the bar
crest, apparent breaking of internal waves, and
rapid vertical entrainment of salt water into the
upper layer. According to Wright's division by
regions, in region I the effluent plume displays
a rapid lateral expansion following the buoyant
plume mechanics of Bondar (1970). In response to
the vertical thinning of the surface freshwater
layer, the isopycnals (lines of equal density)
rise sharply, creating a supercritical Froude
number and internal wave breaking. Maximum
thinning occurs in region II, a distance of four
to eight channel widths seaward of the mouth.
Farther offshore, in region III, as Fig. 4 shows,
the interfacial depth increases with the internal
hydraulic jump suggested by Wright. 1In region IV
the buoyant lateral expansion mechanism is still
" operative, but it is here that wave-, wind-, and
tide-induced mixing of the river effluent causes
the formation of the characteristic low-salinity
Louisiana coastal water. ’ .

During high river stage the increased river
discharge can drive the salt wedge from the
channel, causing the densimetric Froude number to
go to infinity at the channel entrance. Figure 5
shows the effluent boundary is highly irregular
under these conditions because of the increased
role of turbulent diffusion in shaping the plume
geometry. While the flow inside the channel and
in region IIT is completely downstream, below a
depth of 2 m in region III the slightly diluted
Gulf water moves directly toward the bar, to be
vigorously mixed upward in region II. The cross-
plume secondary circulation cells ghown in Fig. 5
are predicted by a numerical simulation model of
stratified water mouths (Waldrop and Farmer 1974)
and have important morphological implications on
seaward levee expansion. ,

It 18 clear that significant progress has
been made both on the geometry and the behavior
of the salt wedge and on the processes control-
ling effluent mixing and expansion at Mississippi
River mouths. The role of interfacial waves,

4



although widely discussed, reémains conjectural,
although Wiseman et al. (i975a) tentatively
report a positive role for this phenomenon.
What 1is really needed, however, is a detailed
study of the entire salt balance in order to
evaluate the relative importance of diffusive and
advective terms both vertically and longitudinally
in this type of estuarine channel. Interfacial
wave breaking is only one possible mode of vertical
advection contributing to the three-dimensional
salt balance. Time-dependent shear flux and flux
associated with time~-dependent cross-sectional
areas might be significant (although previously
ignored) terms to be considered. :
Compared to the Mississippi, the other major .
river mouth in Louisiana, the Atchafalaya, is
essentially unknown. The Atchafalaya debouches

-directly into the largely enclosed Atchafalaya

Bay, and the information available (Barrett 1971)
indicates that this bay and much of adjoining
Cote Blanche Bay are fresh during most of the
year. If there is-a salt wedge in the channel of
the Lower Atchafalaya River, its existence is not
widely known. Tidal induced mixing of these
fresh waters throughout the adjacent bays and
coastal water is probably the dominant dispersion
mechanism, but these questions sorely need
scientific attention. Satellite imagery does

- clearly point out, however, its significant

intrusion of fresh turbid water from the Atcha-
falaya into the coastal current stream. " This
recharging of coastal waters with more fresh
water 160 km west of the Mississippi mouths keeps
the coastal water diluted all the way to the
Texas border.

OPEN COASTAL WATERS

The coastal waters immediately to the west
of the Mississippi delta have recently been the’
subject of intense examination with regard to the
location of the Louisiana Offshore 0il Port
(LOOP) in that vicinity. Wiseman et al. (1975b)
presented a detailed summary of new data on
tides, current, and hydrography taken during a 1-
year field study covering the offshore area from
Southwest Pass to thé east end of Timbalier Bay
and generally enclosed by the 36-m depth contour.
Figure 6 shows a characteristic distribution of
surface salinity in this area with a band of very
low salinity waters (<12 ppt) hugging the coast.

5



These brackish waters are the result of fresh-
water discharge from the bays to the north and
crevasses along the river channel to the northeast

as well as recirculated Mississippi River effluent.

The track of the Mississippi effluent plume is
readily apparent 1in Fig. 6 as an intrusive tongue
of low-salinity water pointing toward Caminada
Bay. An example of the vertical structure of the
salinity field is shown in Fig. 7, a vertical
section along 90°03'W longitude or about 54 km
west of Southwest Pass. A distinct halocline is
seen at the 10-m depth level where the layer of
coastal brackish water overlies the high-salinity
Gulf water, The thin lens of fresher water (15-
16 ppt) near the coast is probably the low-tide
effluent plumes from Barataria and Caminada

bays. Clearly the water mass structure here is

a quite complicated mixture of water types vary-
ing both spatially and temporally. Careful
sampling, however, allowed Wiseman et al. (1975b)
to construct the salinity-temperature diagram in
Fig. 8 from several thousand data points. The
well-defined L-shaped configuration of the points
strongly suggests that three different water
types contribute to the coastal waters: a warm
saline type, a cold saline type, and a freshwater
type whose temperature varies as a function of
time. ' .

These types of water are moved and mixed
along the coast by tidal currents, local wind
effects, and other semipermanent currents. In
order to isolate the tidal currents from the
other driving mechanisms, ten anchor stations of
50 hours' duration (2 tidal days) were occupied
in consecutive months at the time of tropic tide
when tidal currents are expected to be at a
maximum. Figure 9 gives an example of six of the
fifty hourly profiles of the observed currents at
the July 1973 station near the western boundary
of the study area. - Note the significant shear of
current speed and direction with depth. The
tidal currents oscillate with an amplitude com-
parable to the magnitude of the longer term
steady currents, a situation that causes the
. observed currents to present a rather confused
picture. Simple averaging, however, over the 50
hours produces a very well-behaved residual
current profile (inset, Fig. 9) whose orderly
clockwise rotation with depth suggests a steady
wind-driven current to the northeast. Hourly
analysis of the same two tidal days of obser~
vation yields good estimates of the tidal currents
(see Fig. 10), which in general rotate clockwise

6



due to the Coriolis force with amplitude of 10-15

~ cm/sec. The tidal ellipse near the 4-m level is
~deformed due to the interference of vertical
_momentum transfer by a sharp pycnocline in the

area.. The l4-m tidal ellipse also shows deformed
and reduced currents, likely due to a density
step. just above the isohaline Gulf water.

The spatial distribution of the tidal current
stations allowed hourly maps to be made of the
tidal current field in the water mass below the
main pycnocline. Figure 11 shows that the tidal
currents 0.5 hour before high water at Barataria

' . Pass have a circulatory pattern apparently con-

trolled by the bottom bathymetry. Nearer shore,
currents move northeastward along the coast,
while seaward of about the 25-m contour currents
are actually reversed with a 12-hour phase lag.
One half a tidal day later (Fig. 12) the current
field has essentially reversed itself except that
the southwest corner of the study area shows a
tendency for seaward-directed flow. Contrary to
common beliefs, the tidal current field along the
coast is well organized and of sufficient
strength to significantly affect the movement and
mixing of the coastal waters. The strengths of
the tidal currents appear to be distributed in
three " zones that roughly follow the depth contours

_(see Fig. 13). ' It may be significant that the

strongest currents occur near Southwest Pasgs
where the severe bottom curvature has produced a
complex pattern of co-phase lines, also shown in
Fig. 13. These lines of equal tidal phase

~indicate, for example, that high tide arrives 3

hours earlier at Southwest Pass than at Barataria
Pass.

Temporal variability of the currents in the
LOOP study area was also examined by means of
continuously recording current meters moored in
the southwest corner of the study region at the
location of the black square shown in Fig. 12,
where the water depth is 30 m. Figure 14 com-
pares the currents at a depth of 6 m below the
surface to the wind velocity observed at Booth-
ville on the Mississippi River (29°0.5'N, 89°
25'W) during the interval 30 January through 6
February 1974. The current record shown in this
figure is the low-pass output from the 39-point
Doodson-Warburg tidal filter (Groves 1955), which
means that the tidal (diurnal) and higher fre-
quency currents have been removed from the
signal, leaving only the long-term mean drift
currents for comparison. Drift currents remained
steadily westward flowing at about 10 cm/sec up

7



through 2 February, despite the fact that the
wind shifted through more than 360° during this
interval. Only when -the wind steadies down from
the south at speeds in excess of 5 m/sec at about

0400, 2 February does the current at the 6-m level

respond by shifting toward a south-southeasterly

. direction against the wind. It appears that the

south wind is driving the surface layers above 6
m northward toward the coast and the waters at
the level of the current meter (probably below
the pycnocline) are flowing seaward as a return
flow to satisfy continuity. When the wind speed
stopped abruptly at about 1800 hours on' 5 Febru-
ary, the shoreward-directed density gradient
vector, set up by the onshore wind, drives the
water at the 6-m level back toward the north, as
seen in the current direction shift late in the
evening of 4 February. Identical processes have
been reported in detail from the stratified
waters east of the Mississippl delta by Murray
(1972b). Thus ‘the coastal waters this far from
shore (32 km) respond only to steady trends in
the wind decidedly in excess of 5 m/sec, such as
associated with migrating pressure systems and
frontal passages. ,

During intervals of low wind speeds the
waters at this same location (6-m level) are
strongly influenced by the temporal changes of

the tidal currents. The tidal current hodographs

in Fig. 15 are obtained as the tidal band pass.
signal using the same Doodson-Warburg filtering
process described above. On 2 February a 36-cm
tide produced a well-behaved clockwise-rotating
current of a 20 cm/sec amplitude (Fig. 15), not
inconsiderable for the open coastal waters of
Louisiana. As the lunar declination grew larger
on 3 February the tide height increased to 45 cm,
but surprisingly the tidal current hodograph is
severely distorted and damped to an amplitude of
only about 10 cm/sec. This behavior is very
likely the result of the pycnocline migrating
vertically across the current meter level and
damping out vertical momentum exchange. On 4
February trophic tides occur, the highest tides
of the month. Currents, apparently again free
from the hinderance of the pycnocline, amplify
-dramatically, reaching amplitudes of over 40
cm/sec. As tide ranges drop off in the following
days, tidal currents follow suit, exhibiting
their temporal dependence on the tropic-equa-
torial cycle of lunar declination.

The salinity (hydrographic) data discussed
earlier suggested a repetitive but intermittent

8



northward intrusive flow in the surface waters at
the western edge of the study area. Several
experiments were conducted during the LOOP study
using free-drifting drogues set at 1-m depth.
Figure 16 shows a good example of the interaction
between clockwise-rotating tidal currents and a
northward mean drift. Two drogues released
offshore simultaneously execute a tidal loop
while tracking directly toward the Caminada Bay
shoreline. Although the data is lacking, the
drogues are probably entrained in Mississippi
River effluent and will be carried into the
Caminada-Barataria complex by the next flooding
tidal current, thus illustrating a mechanism for
introducing river water inte the coastal bays via
the tidal passes.

Collective consideration of hydrographic
data, drogue data, drift card data, and current
meter data, strongly reinforced by ERTS and DMSP
satellite imageries, brought Wiseman et al..
(1975b) to conclude the existence of a mean flow
pattern in the form of a trapped vortex along the
western flank of the Mississippi River delta.
This type of current pattern, shown in Fig. 17,
still allows for a westerly drift in the low-
salinity, highly turbid coastal boundary layer
that is probably driven by and closely coupled to
the local wind field with its dominant component
from the east.

Immediately to the west of the LOOP study
area, in the waters south of Timbalier Bay, a
hydrographic study by Oetking et al. (1974a)
sponsored by the Gulf Universities Research
Corporation (GURC) has shed some light on the
coastal circulation. Figures 18 and 19 are a

- tidal current hodograph and a segment of a low-

frequency long-term drift current obtained by
analyzing basic data presented by Oetking et al.
with the Doodson-Warburg tidal bank pass tech-
nique. The tidal current record taken from a
bottom current meter at 28°50' N, 90°23'W, is’
quite similar to those obtained in the LOOP study
area, showing clockwise rotation with an 8 cm/sec
amplitude. The bottom current is perhaps better
developed here due to increased distance from the
Mississippl River and the smoother vertical
density gradients. The drift current shown in
Fig. 19 is from the same bottom current meter
installation and shows a sudden change in current
direction from east-northeasterly flow to wester-
ly flow. Inspection of the daily weather maps
provides no suggestion as to what may have caused
this reversal. The answer may lie as far away as
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the Texas coast, where strong southerly winds in
the summer months are known to drive the. coastal
currents northward and northeastward along the
coastal bend. A recent example of this situation
determined ‘from drifter studies is shown in Fig.
20, from the work of Hill et al. (1976). Several
days after the intense southerly winds relax off
south Texas we may find the typical westerly
drift along the Louisiana coast reasserting
itself as in Fig. 19. The summer easterly drift
“off Louisiana was first reported by Kimsey and
Temple (1962, 1963) and verified by Oetking et
al. (1974a). The hydrography reported by the
GURC study (Oetking et al. 1974b) showed the same
variations in salinity and temperature as obser-
ved in the LOOP study, that is, a low-salinity
surface layer extends out at least 30 km from the
coast and a fresh~brackish band of highly turbid
water, probably recycled bay water, about 10 km
wide hugs the coast. It is somewhat surprising
that the tidal currents have not brought about
more mixing of the Mississippi effluent at this
distance along the coast.

Detailed studies along the coast west of
Timbalier Bay are as yet lacking. Among the
meager information we do have concerning the
western Louisiana coastal waters are the salinity
distributions. For example, Gagliano et al.
(1969) present data taken by the Bureau of Com-
mercial Fisheries on seasonal changes in salinity
patterns. Figures 21 and 22 show the salinity
fields in 1963 during a typical flood month-—-
April--and a typical low-stage month--December.
During the flood season estuarine levels of
salinity actually exist along most of the open ‘
coast. ' While direct measurements are unavailable,
such a salinity pattern suggests slow shoreward
movement of water in the lower saline layer and a
circulation dominated by local wind effects in
the upper brackish layer. The wind distribution
discussed earlier would then suggest a westerly
net drift. Definitive studies of the forces
controlling the momentum and the fluxes control-
ling the salt balance in the brackish coastal
waters of western Louisiana have yet to be per-
formed. ' '

For want of further information, it is also
instructive to examine the distribution of co-
phase lines and co-tide lines along the coast

(see Fig. 1), which can be extrapolated from data

available in the Tide Table (NOAA 1975). The co-
tide lines, which are drawn to represent the
arrival time of high water along the coast, are
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in hours before high water at Barataria Pass.
East of the delta the tide arrives with no lead
or lag along the Chandeleur Island chain but
leads Barataria Pass by 2-3 hours around the
circumference of the delta proper. To the west

-of the delta, Fig. 1 also shows, the tide arrives

increasingly earlier as you move from east to
west, reaching a 7-hour lead time near Calcasieu
Lake. This gradient of equal tidal phase along
the coast implies a similar gradient in tidal
currents to remain important along the western
shelf. The co-range lines, also plotted on Fig.

"1, show a distinct pattern of their own. Tides

along the western shelf, especially in the Sabine
Lake-Calcasieu Lake area, are considerably ampli-
fied over the values in the east around the
Mississippi delta. Ranges reaching as high as
2.5 feet, as these do, should produce signifi-
cantly greater tidal currents than previously
expected. The reasons for the tidal amplifi-
cation in the west, which probably are related to
the bottom slope or coastal curvature, are not
known but should be the subject of future re-
search.

In the open waters east of the Mississippi
delta Murray (1972a, 1972b, 1975b) and Murray et
al. (1970) gained considerable insight into the
mechanics governing the movement of the coastal

- waters during the well-known Chevron oil spill

off Main Pass in 1970. Density stratification
appeared to be quite common in this eastern area
also. Figure 23 shows a 5-day time series record
of water density o, taken from the CGC Dependable,
anchored near 29°23'N, 88°58'W, about 15 km east
of the Mississippi delta. The primary features

_ to note in Fig. 23 are (a) the sharply plunging

isopycnals ‘beginning around noon of 16 March and
continuing until about 0300 the following morn-

ing, (b) the stability of the isopycnals until

noon of 17 March, followed by (c) their sharp
rise back up to their early level. In‘this type
of plot, plunging isopycnals indicate that fresh-

" er, less dense water has moved across the obser-
- vation profile and rising isopycnals indicate the

opposite. The companion figure, Fig. 24, shows
simultaneous vertical current profiles -and

surface wind stress separated into wind episodes
at the same location. Episodes no. 2 and 3
correspond to the time of plunging isopycnals,
strong easterly and southeasterly winds blow the
brackish surface water toward the. coast, driving
the saline bottom water offshore. Thus the

coastal water prisms are enabled to fill completely
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with the lighter water characteristic of the
surface layer.  The sudden drop in wind stress in

episode no. 4 in Fig. 24 reflects the same process,

with surface currents streaming back offshore due
to the suddenly unbalanced pressure gradient.
Bottom currents are similarly reversed. This
redistribution of mass by strong onshore winds
associated with migrating atmospheric pressure
systems and its sudden readjustment when wind
stress drops appears to be a fundamental process
in stratified coastal waters,

NEARSHORE CURRENTS

Very little is known about currents inside
the 10-m depth contour along the Louisiana coast.
Harper (1974) did make two. tidal .observation
stations in about 6. m of water along the coast
off Grand Isle and found weak but well-behaved
tidal currents and residual or mean currents
directed westerly in response to local winds as
he was ingide the brackish water coastal boundary
layer. The meteorological driving forces have
not been studied in detail off Louisiana. A
good example of a meteorological system that is
-probably of great importance here is the coastal
air circulation system shown in Fig. 25, synthe~
sized from a study in Texas (Hsu 1970). Varying
horizontal pressure gradients because of relative
heating and cooling of the land and sea surfaces
generate onshore winds in the day and offshore
winds in the early morning hours. Note how the
winds aloft are reversed from the surface and
that distinct scales of wind motion (10-20 km)
might be expected to affect inshore water move- -
ments, Of particular interest to Louisiana is
the damping and lagging effects produced by the
two bays depicted schematically in the figure.
Currents near the coast can in fact be influenced
strongly by this sea breeze wind system, as shown
in Fig. 26, where currents of 25 cm/sec are
driven along the coast by a southwesterly sea
breeze on the Florida .Panhandle Gulf of Mexico
shore. Murray.(1975a);, in a detailed study, has
demonstrated that theoretical considerations
involving wind stress, wind angle to the coast,
and eddy viscosity explain the subtle three-
dimensional structure he observed in wind-driven
currents close to the coastline. The importance
of density stratification is again emphasized
where Murray (1975a) showed with a numerical
solution to the differential equations of motion
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that the absence of movement below 6 m in Fig. 27
1s due to the density gradient damping out the
wind-induced vertical momentum transfer.

These diurnally varying winds, although of
modest strength, can have an important effect on
the nearshore wave field, as shown by Suhayda in
Fig. 28 (from Sonu et al. 1973). Note the intro-
duction of wind waves with a period of 1.5 sec-
onds at 1000 hours by the sea breeze and the
subsequent increase in period to 3 seconds by
1800 hours, when this component of the wave
spectrum begins to decline as the baroclinic
pressure field driving the sea breeze diminishes.
‘ Inside the wave-breaking zone momentum is
transferred from the shoaling and breaking waves
to what are usually referred to as longshore or
littoral currents. This type of wave-driven
current is of great importance to beach erosion,
beach nourishment, and recreational use. It has
been studied widely around the world but virtual-
ly ignored in Louisiana. The type of wave-driven
circulation cell observed along the Florida Gulf
coast (Sonu 1972) is shown in Fig. 29. Currents
move onshore on the flanks of a troughlike de-
pression referred to as a rip chamnel. In the
channel seaward flow extends through the breaker

“1ine and may reach speeds of 1 m/sec or more.

These "rips" are a common cause of drowning for:
unwary swimmers.

Most of our knowledge of nearshore currents
'discussed above is based on observations from-
adjacent but nonetheless sandy type coasts, quite

‘_different from the mud and marsh dominated coasts
. of Louisiana. Significant differences will no ’

doubt emerge as our ignorance of 1ocal .inghore
phenomena is cleared away.

COASTAL BAYS AND LAKES ‘
Eight distinct coastal lakes and bay units

'dominate the coastal wetlands of Louisiana (see

Fig. 1). Five of these, (1) the Barataria-

Caminada Bay complex, (2) the Terrebonne-Timba-

lier Bay complex, (3) the Vermilion/Cote Blanche/
Atchafalaya Bay complex, (4) Calcasieu Lake, and
(5) Sabine Lake, have sufficient salinity concen- -

‘trations to be considered estuarine in character.

The Lake Borgne portion of (6) the Lake Borgne-
Pontchartrain complex is also estuarine, while
Lake Pontchartrain proper is probably best
grouped with (7) Grand Lake and (8) White Lake as
characteristically fresh water or nonestuarine.

13



Broad, shallow estuarine bays with narrow
entrénceé and relatively low interior tide ranges
are usually referred to as bar-built estuaries in
the literature (Pritchard 1952) because of the
presence of long barrier bars frequently separ-
ating them from the sea. Sabine Lake, Calcasieu
Lake, the Terrebonne-Timbalier and Barataria Bay
complexes are clearly of this type, while Atcha-
falaya Bay will probably evolve into this config-
uration in the future. Unfortunately, this is
the least studied type of .estuary from the view-
point of circulation dynamics. Water levels and
salinity distributions are usually the only
information available. Wind-driven currents were
originally suggested to provide most of the
mixing, but recent research suggests that tidal
currents, even though of moderate magnitude, may
play a significant role in the salt balance
except during the period of frontal passage.

Barataria-Caminada Bay is by far the best
known scientifically. Kjerfve (1973, 1975)
studied water level dynamics in Caminada Bay and
related surface slope vectors to tidal waves and
to wind stress in fair weather conditioms.
Kjerfve showed that the instantaneous slope
vector either oscillated or rotated in the hori-
zontal plane.as a function of time, primarily
because of the interaction of tidal input from
two major entrances, Caminada Pass to the south
and the opening from Barataria Bay to the north-
east. A simplified set of equations (assuming a
constant depth, neglecting the Coriolis and the
nonlinear field accelerations, and the horizontal
density gradients, but maintaining a linear
bottom friction) were solved analytically for two
damped tidal waves entering the bay at right

angles and reflecting perfectly at the boundaries.

A constant surface wind stress was allowed to act
on the model. Figure 30 shows a 63~hour record
of the magnitude and direction of the water
surface slope in Caminada Bay calculated from
three cross-leveled water level instrument
stations. The stairstep clockwise rotation of
the slope direction and the periodic pulsing of
the magnitude of the slope shown in the lower
.part of the figure aré successfully predicted by
the analytical model as shown in Fig. 31.
Kjerfve shows several other successful predic-
tions of water surface slope under varying wind
conditions and concludes that barotrophic pres-
sure gradients associated with these complex
tidal slopes must play an important role in the
momentum balance of this type of bay. '
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. Kjerfve's work did not consider spatial
variations in the density field. Barrett (1971),
however, shows an outstanding example of the two-
dimensional salinity structure in Barataria Bay,
reproduced in Fig. 32. - The baroclinic pressure

. gradient term, g/p /Z 35p /%% dz, can-be reason-

ably estimated from® this figure at a value of 3
x 106, which is only an order of magnitude
smaller than Kjerfve's average surface slopes of

10-3. Thus it appears that the salinity gradient
in the estuary undoubtedly will at times make
important contributions to the momentum balance.

The technique of mathematical modeling of

estuarine tidal flows has recently been applied
to Barataria Bay complex by Hacker (1973). Using
a Leendertsee (1967) type approach to the solution
of the finite difference form of the equations of
motion, Hacker predicts velocity and tide height
distributions in the bay complex. The reliability
of the velocity field maps is difficult to inter~
pret, especially where the many islands and _
promontories present seem to be ignored.. Very
interesting predictions are also made of salinity
distributions using an average freshwater input
of 1,000 ft3/sec. ' The magnitude of the salini-
ties (see Fig. 33) simulated in the bay appear to
be quite reasonable compared to the data of

‘Barrett (1971). The lateral distributions of

salinity, however, do not reflect extreme cross-
bay gradients shown in the salinity maps of the
area presented by Gagliano et al. (1969). Other
simulations presented by Hacker (1973) are (a)

:v high freshwater runoff flow through the system,

which simulates conditions that are encountered
in an unusually wet year; (b) the effects of a
cold front passage; (c) a hurricane surge; and

“(d) a significant drop in input Gulf salinity due

to the migration of Mississippi River effluent

into the area. The three~fold increase in fresh-
water discharge (a) surprisingly did not apprec-
iably affect the location of the isohalines.  One

‘wonders if the somewhat arbitrary choice of the

constant dispersion coeffieient 1s not governing

" the model behavior. The cold front passage (b)

was somewhat ambiguous, but. the surge (c) did.
push the 15 ppt isohaline 10 km farther inland
than normal. The effect of the drop in salinity
down to 10 ppt (d) at the passes is shown in Fig.
34. The drop occurred at high tide, 3 hours
earlier than the figure, and a high-salinity dome

 1s already evident in the middlie of the bay. How

long the bay takes to stabilize to the new con-
ditions is not reported
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It is clear that Hacker's work is a signif-
icant first step in our ‘understanding of these
large, complex systems. Considerably more work
needs to be done in understanding the forces
acting in the bays so as to increase the relia-
bility of the input functions to the models. For
example, the baroclinic pressure gradient term is
ignored in the above model and the salt concen-
tration is spread in a passive manner.

The circulation and momentum balance of the
. coastal lakes is even less well known than the
estuaries. Winds, of course, are assumed to be
the dominant driving mechanism. - Stone et al.
(1972), however, have shown through an impressive
data collection program using aerial photography
the response that the surface circulation may
take, depending on wind direction, speed, and
basin geometry. This work is apparently the only
kinematical study of the large Louisiana coastal
lakes and yet it is restricted to LaGrangian
tracks of the surface circulation. Stone et al.
(1972) reports that in more than 60 percent of
the thirty current experiments the current set is
controlled directly by the wind direction. It is
more than likely that future work will show
complex three-dimensional circulation patterns
controlling the movement and dispersion of soluble
and particulate matter in these lakes. An exam-
ple of Stone's results showing currents in the
southern half of the lake following the wind but
meeting south-flowing currents at a convergence
line is reinterpreted from the original data in
Fig. 35. Such opposing current fields could be
caused by a wind shift, density discontinuities,
or perhaps even tidal current effects.

CHANDELEUR~BRETON SOUND

An integral unit isolated by.itself to the
east of the Mississippi delta (see Fig. 1),
Chandeleur-Breton Sound is an impressive body of
water extending 90 km in a northeast-southwest
direction and bounded to seaward by the Chande-
leur Island-Breton Island chain lying more than
35 km offshore. The U.S. Coast and Geedetic
Survey conducted a tide and current survey in the
sound along the track of the Mississippi River
Gulf Outlet Channel in the early 1960s, but the
data from the survey are of good quality only at
intermittent times and there is almost no simul-
.taneous data at ‘separate locations. Hence the
time-dependent circulation pattern was impossible
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to decipher, and a two-dimensional numerical
model of the area, based also on thé Leendertsee
(1967) technique, has been constructed by Hart
(1975). Hart's model features tidal inputs from
the northern and southern entrances and allows
for periodic overflow of the shallow shoals
connecting .the elements of the island chain. The
bottom topography is shown in Fig. 36. Two
examples of the tidally driven velocity field are
included here as examples. Figure 37 shows the
currents 3 hours before input low tide on 12 June
1968. . The sound is draining both to the south
and to the north, with a divergence zone midway
up the axis of the channel. Speeds of 20-30
cm/sec are common near both exits. Eighteen
hours later (Fig. 38) the tide is 1 hour after
input high water and currents are still filling
the sound through the entrances and converging
and veering in mid-sound to £ill the marsh areas.
Hart has shown that the differences in range
at the two entrances can drive significant net
circulation through the sound. .He also goes a
step farther than Hacker (1973) and includes a
wind stress in his finite-difference formulation.
Winds of 20-knot speed from various quadrants
have relatively J.ittle effect on the insfaﬁt:aneou_s
circulation but substantially increase the net

~ through flow. The co-range lines for an average

tide (Fig. 39) show an interesting pattern. The
higher input ranges are apparent at the northern
entrances and the range increases to maximum
values at the middle of the sound. In a sur-
prising result ranges along the coast can be
quite a bit smaller than in mid-sound. Note the
steep hydraulic gradient across Chandeleur Island.
A co-phase or co~tidal map (Fig. 40) indicates
high tide progresses in a fairly well behaved v
manner across the sound to the coast with a 3-4
hour lag behind the entrances. Hart's model
shows considerable detail in the tidal velocity
and tidal height distributions that should now be
subject to a systematic testing. Comparison
between the usable U.S. Coast and Gecdetic Survey
data and the model was quite favorable.

TIDAL PASSES, MINOR RIVERS, AND WETLANDS

 CIRCULATION

It is discouraging to note that definitive
studies of the net flux of momentum, salt, heat,
and other biological and chemical scalars through
the numerous tidal passes have yet to be reported.
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The basic theory and methodology are now well
laid out (Dyer 1974; Murray and Siripong 1973) to
-evaluate the contributions of (a) vertical and
lateral shear flux, (b) time-dependent oscil-
latory shear flux, (c) flux due to time variations
-in cross-sectional area, and (d) mean freshwater
discharge to the balance of these properties.
Some limited data are available, however, which
will be valuable in designing future experiments.
Figure 41 shows about 9 hours of velocity pro-
files at one station in Caminada Pass. Unfortun-
ately, the data do not extend for a complete
tidal cycle, so the vertical distribution of the
time-averaged net flow cannot be obtained. Note
that at 1530 the tidal current turns earliest
near the bottom. ' This phase priming with depth
is due to the presence of frictional forces in
the momentum balance. The secondary increase in
upchannel speeds after 1530 might be due either
to wind effects or a lesser tidal harmonic but
does point out the necessity of monitoring the
surface wind stress to calculate the eddy stress
profile in the channel., Simultaneous salinity
profiles are given in Fig. 42. Walters and
Hernandez (1971) note that the steepest salinity
gradients occur with the largest current ampli-
tudes and that isohaline conditions are approached
as the current slackens and moves toward the time
of reversal. Hughes (1958) and Murray et al.
(1975) report minimum stratification occurring
with the maximum current speed in the Mersey
Estuary, which is of course to be expected if the
energy for vertical mixing is derived from the
mean current. With this contradiction in hand
the Caminada Pass results deserve further atten-
. tion. The depth—averaged‘values‘of velocity and
salinity are plotted against time for the set of
observations in Fig. 43. Note that the mean
salinity begins to drop very close to the time
that the current turns from flood to ebb and,
although it is difficult to estimate from less
than half a cycle, there does appear to be a
considerable net flow of water and salt out of
the channel during this period. '

An unpublished report by Marmer (1948) gives
some data on current measurements in the four
major passes of the Barataria Bay complex
(Caminada, Barataria, Quatre Bayous, and Abel
passes). Figure 44 shows the current speed in
knots at a station inside Barataria Pass.
Surprisingly there seems to be very little phase
shift with depth in the currents and the uniform-
ity of the tidal current speeds with depth lends
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support to the two-dimensional model of Hacker
(1973). Note the 3-4 hour phase shift between
currents and tide height, which means the simple
assumption used by Marmer that G4 A = Q, the new
discharge, is invalid, as shown by Pritchard
(1958), where u is the average current speed and
A is the average cross-sectional area. Nonethe-
less, from the current meter data in the passes
Marmer calculates a net discharge over a tidal
period of 449 x 106 ft3, which is equivalent to
about 5,000 ft3/sec or five times the value
suggested by Gagliano et al. (1969) using hydro-
logic data. The agreement is actually quite
encouraging considering the 20-year difference in
the studies and especially since Marmer's results
represent only a 2-week interval. The major
deficiency in Marmer's study from a modern point
of view is his failure to consider the salinity
and temperature structure, important not only
from the dynamical aspect but also for the
mechanics controlling the salt balance and hence
biological productivity. Apparently no data is
available on the dynamics in the Mermentau River
mouth, the Pearl River mouth, or the Sabine and
Calcasieu passes, although Barrett's (1971) data
(plotted on Fig. 1) indicate very interesting
mixing problems exist in the channels and the
lower parts of the lakes. :

The last topic to be considered in this
survey concerns the wetlands circulation; that
is, the flow of water and salt through the in-
numerable interconnecting channels, canals, and
small lakes that make up the swamps and marshes.
These smaller water conduits are truly the "blood
vessels" of the marshlands. In the one such
study to my knowledge in Louisiana, Kjerfve
(1971) made répeated'measurements over 8 days in
June 1971 of water velocity, salinity, and local
meteorology in the marshlands southwest of
Caminada Bay. The time-averaged volume flow and
isohalines he found from this period are shown in
Fig. 45. It is apparent from the figure that a
considerable net flow of water is entering the
study area from the north via Bayou Ferblanc.
Thus a considerable amount of bayward salt flux
must be associated with the new freshwater dis-
charge in order to balance turbulent flux of salt
implied by the significant horizontal salinity
gradient shown in Fig. 45. Using Pritchard's
technique for estimating renewal time, Kjerfve
found the water in the study area reaches a 50
percent renewal level in about twelve tidal
cycles. Although modest in scale, this study
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points out that systematic observations can lead
- to a reasonable understanding in this complicated
regime of interconnecting channels and lakes.

SUMMARY AND RECOMMENDATIONS

A review of our knowledge of circulation and
currents in the coastal water of Louisiana indicates
- that, although some notable progress has been made
in certain areas, there are considerable segments
of the coast for which we lack even the most
rudimentary knowledge.

The salt wedge type of estuary in the passes
of the Mississippi River is generally understood
with regard to wedge geometry and dependence on
river stage, but definitive knowledge of the salt
balance requires further attention. The effluent
plumes from the Mississippi mouths, long considered
to be controlled by turbulent mixing, have recently
been the subject of intense study and now appear
to be heavily dependent on the densimetric Froude

number and the principles of buoyant plume expansion.’

Detailed studies on how steps in temperature and
salinity control mixing in this region are now in
order.

With respect to the open coastal or shelf
‘waters, recent studies dealing with the Louisiana
superport and the-Offshore Ecology Investigation
of the Gulf Universities Research Corporation
have laid a firm basic framework of knowledge of
the shelf waters from the Mississippi delta to
Timbalier Bay. The roles of tidal currents,
density stratification, local wind drift, and
regional currents have been identified if not
completely understood. There seems to be nearly
complete ignorance of the shelf waters west of
Timbalier Bay, except that we expect a westerly
drift to prevail in all seasons but summer. The
reason for the summer reversals remain unclear.
High tidal range in the west may have an impor-
tance previously unanticipated.

Our detailed knowledge of the dynamics of
our prolific coastal bays and estuaries is embar-
rassingly poor. Salinity distributions and water
levels have been examined repeatedly, but details
of the momentum, heat, and salt balances have not
been ascertained. Numerical modeling perhaps
offers a shorteut to achieving this understanding,
but such studies will be possible only after the
controlling forces are better defined and param-

eterized by systematic dynamically oriented field
studies.
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Chandeleur-Breton Sound, which comprises the
bulk of Louisiana water east of the Mississippi
delta, is poorly known dynamically. A recent
numerical study of this area has suggested a
number of possibly important aspects of the
circulation pattern, such as a net southward flow
driven by a differential in the tide ranges at
the entrances, and ‘the role of northers in driv-
ing a net circulation. Such results need field

. verification before further extension of this

approach to more complicated applications.
The tidal passes and minor river mouths have
been subject to a few sporadic measurement cam-—

~ paigns, but definitive studies of salt, heat, and

momentum flux in the important channels remain to

be performed. In the wetlands proper, one study

has suggested a possible approach to understanding
the circulation and salinity balance in the
tortuous channels and small lakes that make up
this complicated but extremely valuable division
of the coastal waters.

- T would rank the needs for these studies as
follows:

1) A study to. determine the current pattern and
mixing characteristics relative to recycling
"bay waters of the coastal boundary layer, a

zone of brackish, highly turbid water. This
prism of water extends along the whole coast
in a belt about 15 km wide and is usually
within the 10-m depth contour.

2) A detailed study within a major estuarine bay
" of the momentum and salt balances designed to
contrast winter and summer conditions and

input into numerical models. _

3) A similar study within the confines of one of
the important estuarine passes.

.. 4) A background study of the hydrography and

.circulation patterns along the western Louis-~
iana shelf, giving special emphasis to the
~ high-tide zone near Calcasieu Pass.
5) A modest field program in Chandeleur-Breton
. Sound to test the applicability of the exist-

. .ing two-dimensional numerical model.

6) Detailed studies of the mechanics of mixing
of the Mississippi River effluent with Gulf
water that results in the formation of the
Louisiana coastal water.

7) Detailed studies of the salt and momentum
balance in a Mississippi River salt wedge

‘ channel.

8) An exploratory study to delineate the zone of

mixing and the problems associated with the
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mixing process of the discharge of the
. Atehafalaya River.
9) A study of the intermal tides and tidal
: currents In stratified waters, unsolved
problems typically associated with the
Louisiana shelf.
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Figure 2. Bivariate frequency distributions of wind speed
versus wind directipn for the areas offshore from Bayou
Lafourche (28°N to 30°N, 89°W to 92°W) and from Sabine Pase

(28°N to 30°N, 92°W ‘to 95°H) The ' percentage subtotals of
occurrence are given in the margin
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Figure 9. Observed and residual currents at various times ddring the 2

tidal day anchor station on 11-13 July 1973. The residual currents show
the net cufrent ‘p:ro_firlg with tidal currents effectively averaged out.
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Figure “23._ Time series plot of isopycnals (line of equal wat'e: density,
ot) 15 km east of the Mississippi delta at 29°23'N, 88°58'W, showing the
effects of strong onshore winds and their sudden dropoff on the local
density field. .
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Figure 26. Nearshore currents driven by light local winds along the Florida
‘Panhandle coast 30 km west of Destin Pass. Origin of tracks is labeled with

.thg depth of dr_o_gu_e séttihg.
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Figure 27. Profile of alongshore'current':s'peed illustrating thg effect
of a density gradient in damping out the downward transfer of momentum
necessary to generate currents at the lower levels.
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Figure 28. Power spectrum of the nearshore wave field under light
coastal winds. Note the generation and growth of high-frequemcy
waves at about 1000 hours as the sea breeze strengthens.
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Bathymetr

Figure 37. Currents (speed.s given in centimeters per secbnd) 3 hours
after low tide at the entrances predicted by the two-dimensional
numerical model of Hart (1975). :
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- ‘Figure 44, Current at various depth levels in Barataria Pass, 1934. -
‘Flood curtrents have a negative sign,’ ébb currents have a pesitive sign.
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